
В открытом сосуде находится смесь воды и льда (удельная $t, {}^{\circ}\mathrm{C}$ теплоёмкость воды $c=4200~\frac{\mathrm{Дж}}{\mathrm{K}\mathrm{\Gamma}\cdot{}^{\circ}\mathrm{C}},$ удельная теплота плавления

льда $\lambda = 3, 4 \cdot 10^5 \; \frac{\mbox{${\rm J}{\mbox{$\rm K}{\mbox{$\rm K}{\mbox{$\rm \Gamma}$}}}}{\mbox{${\rm K}{\mbox{$\rm \Gamma}$}}}).$ Масса воды в смеси $\emph{m}_{\mbox{\tiny B}} \;$ = 350 г. Сосуд

внесли в тёплую комнату и сразу же начали измерять температуру содержимого сосуда. График зависимости температуры t смеси от времени τ изображён на рисунке. Если количество теплоты, ежесекундно передаваемое смеси, постоянно, то масса m_{π} льда в смеси в начальный момент времени была равна ... Γ .